Mark Scheme 4737 January 2006

1	(*)	41. C		
1	(i)	A1 $A2$ $B1$ R	M1	For A1 or A2 or both joined to G, P and R B1 or B2 or both joined to G, T, W and Y and C1 or C2 or both joined to P, W and Y
		B2 T $C1$ W	A1	For both A1 and A2 joined to G, P and R both B1 and B2 joined to G, T, W and Y and both C1 and C2 joined to P, W and Y
	(ii)	C2 Y		
		A1 G $A2$ P	B1	For A1 paired with G and A2 with P, or vice versa; B1 paired with T and B2 with W, or vice versa; one of C1, C2 paired with Y and
		B1 R $B2$ T		the other left unpaired
		$C1 \bullet \qquad \qquad W$ $C2 \bullet \qquad \qquad Y$		
	(iii)	R - A2 - P - C2 or in reverse	M1	For a valid alternating path for their diagram (need not be minimum)
		Accept $R - A - P - C$ or in reverse	A1	For this alternating path
		Amanda gets green and red Ben gets turquoise and white Carrie gets yellow and pink	B1	For this matching (may use G , R , etc.)
	(iv)	Amanda gets pink and red Ben gets green and turquoise Carrie gets white and yellow	B1 7	For this matching (may use G , R , etc.)

4737 Mark Scheme January 2006

2	Stage	State	Action	Cost	Minimum		
	1	0	0	3	3		
		1	0	4	4		
		0	0	6+3 = 9		M1	For completing cost column for stage 2
	2		1	4+4=8	8	A1	For completing cost column for stage 3
		1	0	6+3=9	9		
			1	7+4=11		M1	For completing minimum column for stage 2
	3	0	0	5+8 = 13		A1	For completing minimum column for stage 3
			1	3+9=12	12		
	Shortes	st route	: (3; 0) –	(2; 1) - (1; 0)	-(0;0)	B1	For this route (not in reverse)
	Length	of sho	rtest rout	e = 12 km		B1 6	For 12

3	(i)	6+3+2+4 = 15 litres per second	B1	For 15
	(ii)	6+2+3+6+2+2 = 21 litres per second	M1	For showing how 21 (given) was worked out
		Do not use arc DG as it is crossed twice	A1	For explaining why arc DG is not used
		or $X = \{S,A,B,C,E,F\}$ $Y = \{D,G,H,I,T\}$		
	(iii)	SC cannot be full since the most that can		
		leave it is $2+4 = 6$ litres per second	B1	For 6 and 'out' or equivalent
		AD cannot be full since the most that can		
		enter it is $2+3 = 5$ litres per second	B1	For 5 and 'in' or equivalent
		The most that can flow in SB is $2+3 = 5$ litres		
		per second	B1	For $SB = 5$
	(iv)	Maximum flow = 14 litres per second	B1	For 14
		eg A 5 D 5 G		
			M1	For a feasible flow
		3/ 2 5		(may imply vertex labels)
		5 TB 3	A1	For a feasible flow of 14 litres per second
		S		(directions must be shown for the A mark)
		6 2 2 2 2		
		$C \rightarrow A \qquad F \qquad 2 \qquad I$		
			M1	For this cut described or drawn on diagram
		Cut $X = \{S,B,C\} \ Y = \{A,D,E,F,G,H,I,T\}$	A1	For explicitly stating that this cut = 14
		This cut has capacity 14 litres per second		
		1 7 1	B1	For explaining how maximum flow =
		Maximum flow \geq this flow = 14		minimum cut shows that 14 is the maximum
		Minimum cut \leq this cut = 14		here
		But maximum flow = minimum cut	12	(at least referring to 'this flow' and 'this cut',
		so 14 is the maximum flow and the minimum		not just stating 'max flow = min cut)
		cut.		

4	(i)	£260	B1	For correct answer with units
	(ii)	Reduce rows		Or scaled throughout by 10
	()	0 60 30 10		
		0 90 90 60	M1	For correct method for reducing rows
		0 80 70 40		
		10 10 20 0		
		Reduce columns		
		0 50 10 10		
		0 80 70 60	M1	For correct method for reducing columns
		0 70 50 40		
		10 0 0 0	A1	For a correct reduced cost matrix
		Cross through 0's using as few lines as possible	M1	For correct crossing out for their reduced cost
		0 50 10 10		matrix. Likely to be shown on reduced cost
		0 80 70 60		matrix.
		0 70 50 40		
		10 0 0 0		
		Augment by 10	M1	For correct augmenting from their reduced cost
		0 40 0 0		matrix and their crossing out
		0 70 60 50		
		0 60 40 30	A1	For a correct solution after first augmenting
		20 0 0 0		
		Cross through 0's using as few lines as possible	M1	For correct crossing out for their augmented
		0 40 0 0		matrix. Likely to be shown on matrix.
		0 70 60 50		,
		0 60 40 30		
		20 0 0 0		
		Augment by 30 _	M1	For correctly augmenting their matrix in one step
		30 40 0 0		by an amount greater than 10 (or greater than 1 if
		0 40 30 20		scaling has been used)
		0 30 10 0	A1	For correct final matrix from completely correct
		50 0 0 0		method
		Allocation	D.1	
1		A = Y	B1	For this allocation
		B = W	D1	F. v. 6100
		C = Z $D = X$	B1	For £180
		D = X $Cost = £180$		
	(iii)	Hungarian algorithm finds the minimum cost	B1	For 'minimum cost' or equivalent
	(III <i>)</i>	complete matching	13	1 or minimum cost of equivalent
		complete matering	13	

Mark Scheme

i (i)	follows C on The dummy	activity after	C is needed because G ws both B and C. H is needed because both e pair of vertices (events).	B1 B1			
(ii)	Activity A B C D E F G H I J	Duration 5 3 4 2 1 3 5 2 4 3	Immediate predecessors	B1			
(iii)		5 D 7 7 7 8 8 4 5 6 5	H 9 11 11 11 11 11 11 11 11 11 11 11 11 1	M1 A1 M1 A1	For carrying out forward pass For all early event times correct For carrying out backwards pass For all late event times correct		
		ompletion time vities: A, D, I	e = 11 days	B1 B1	For 11 with units For A, D, I only		
(iv)	1 day			B1	For 1 (not 'more than 1')		
(v)				В1	For the first four days correct		
				M1	For a resource histogram with no 'hanging' cells For days five onwards correct		
	Number	vorkers require	nd = 4	Al	For 4 or follow through their histogram if possible		
(vi)	5 to 7 (it hap This causes a	by E by 2 days opens on day 8 activities H and day and H by	d J to shift.	M1 A1 19	For stating how much to move <i>E</i> For saying that <i>H</i> and <i>J</i> (only) will need to shift For describing how much <i>H</i> and <i>J</i> move		

6	(i)	In column Y: $-3 < 5$ so A does not dominate B	B1	For -3 < 5 or equivalent
	(-)	In column <i>X</i> : $-3 < 2$ (or column <i>Z</i> : $1 < 4$) so <i>B</i>	B1	For $-3 < 2$ or $1 < 4$ or equivalent
		does not dominate A		1
	(ii)	The worst outcomes for Maria are:	M1	For finding column maxima
	, ,	<i>X</i> lose 4, <i>Y</i> lose 5, <i>Z</i> lose 4	A1	For rejecting 5 as being bigger than 4, or using a
				word like 'lose' or '-4, -5, -4'
	(iii)	If Lucy plays B she could win as much as 5	B1	For '5 is the most she can win' or equivalent
	(iv)	Need to add 3 throughout matrix to make values	B1	For 'add 3 throughout matrix' or equivalent
		non-negative, this removes the 3 again		
	(v)	Having added 3 throughout, the expected number		
		of points win by Lucy when Maria chooses		
		strategy <i>X</i> is $5p_1 + 0p_2 + 7p_3$, and similarly the	M1	For showing where one of the expressions came
		second expression is the expected number of		from, or for referring to 'when Maria plays each of
		points won by Lucy when Maria chooses strategy		her strategies' or equivalent in a non-specific way
		Y and the third expression is the expected		
		number of points won by Lucy if Maria chooses	A1	For specifically linking the expressions to Maria
		strategy Z		choosing strategy X , strategy Y and strategy Z in
			3.41	that order
	(vi)	The number of points that Lucy can expect to win cannot be less than the worst of the three	M1	For reference to 'number of points won by Lucy'
		expressions, so it is less than or equal to each of	A1	or equivalent For reference to 'the worst outcome' or equivalent
		them.	AI	For reference to the worst outcome of equivalent
	(vii)	$2(p_1) + 4(p_3) = 2p_1 + 4(1-p_1) = 4-2p_1 \text{ (given)}$	B1	For $2p + 4(1-p)$
	(111)	$2(p_1) + 4(p_3) - 2p_1 + 4(1-p_1) - 4-2p_1 \text{ (given)}$ $4p_1 - 3(1-p_1) = 7p_1 - 3$	B1	For $7p - 3$
	(viii)	$4 - 2p_1 = 7p_1 - 3 \Rightarrow p_1 = \frac{7}{9}$	B1	For solving $4 - 2p_1$ = their expression to get a
	(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	,	21	probability $2p_1$ and expression to get u
		$p_1 = \frac{7}{9} \implies 2\frac{4}{9}, p_1 = 0 \implies \min(4, -3) = -3,$	M1	For evaluating $4-2p_1$ at their p_1 and the values -3
		$p_1 = 1 \Rightarrow \min(2, 4) = 2$		and 2
		Maximin is when $p_1 = \frac{7}{9} \implies$ choose randomly		
			A1	For reference to maximin, or equivalent, leading to
		between A and C so that A is chosen with		selection of $p = \frac{7}{9}$, or in context
		probability $\frac{7}{9}$	15	1 9 /